Intro	Helium energy levels	QED theory	Numerical evaluation	Results	Tests	Conclusions

Helium fine structure theory for the determination of α

Vladimir Yerokhin¹ & Krzysztof Pachucki²

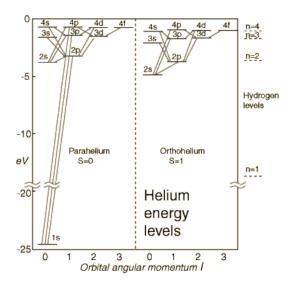
¹St. Petersburg State Polytechnical University ²Institute of Theoretical Physics, University of Warsaw

supported by NIST Precision measurement Grant

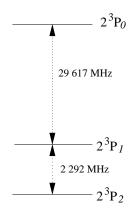
Intro ●○	Helium energy levels	QED theory	Numerical evaluation	Results	Tests 00	Conclusions
Intro	oduction					

- comparison of high precision theoretical predictions of atomic energy levels to experiments gives information on the structure of nuclei: rms charge radius, nuclear polarizability, magnetic moment, etc.
- determining fundamental constants from the atomic and molecular structure
- accurate treatment of electron correlations
- beyond static nucleus: finite nuclear mass corrections including relativistic effects

With the inclusion of the finite mass of the nucleus, relativistic, and QED corrections up to order $\alpha^3 \nu_0$, the value of the fine structure constant is determined to be


 $\alpha^{-1}(H) = 137.035 \ 45(62).$

It is consistent with the most accurately known value of α at present [Hanneke 2008, Kinoshita 2007]


 $\alpha^{-1}(g-2) = 137.035\ 999\ 084(51).$

The 4.5 ppm determination of α from hydrogen is much less precise than the 0.37 ppb value from *g*-2 because of the short lifetime of hydrogenic 2*p* states, of order 10⁻⁹ seconds.

Intro	Helium energy levels ●୦୦	QED theory	Numerical evaluation	Results	Tests OO	Conclusions O
Heli	um energy	levels				

 the large interval is used for determining *α* and the small one as a test of theory.

- determining α from the simplest many-electron atom, helium, program initiated in 1964 by Schwartz.
- the high experimental precision achieved in helium make possible accurate determination of *α* that depends on the low energy scales characteristic of atomic physics.
- three states is $2^{3}P_{J}$, nonrelativistically degenerate, but relativistic effects lead to a frequency splitting of order $\alpha^{2}R_{\infty}c$.

 Intro
 Helium energy levels
 QED theory
 Numerical evaluation
 Results
 Tests
 Conclusions

 Expansion of binding energy in α

Expansion of the energy in powers of the fine structure constant ($\alpha \approx$ 1/137)

$$E_{\rm fs}(\alpha) = E_{\rm fs}^{(4)} + E_{\rm fs}^{(6)} + E_{\rm fs}^{(7)} + \cdots$$

- $E^{(n)} \sim \alpha^n \mathcal{E}^{(n)}$
- Valid for small systems with not too large nuclear charge Z
- Expansion coefficients are expressed in terms of nonrelativistic expectation values of effective Hamiltonians

•
$$E_{\rm fs}^{(4)} = \langle H_{\rm fs} \rangle$$

Intro	Helium energy levels	QED theory ○●○○	Numerical evaluation	Results	Tests 00	Conclusions
Leac	ling relativi	stic, QE	D and the	nuclea	r reco	oil

$$\begin{aligned} H_{\rm fs} &= \frac{\alpha}{4\,m^2} \left(\frac{\vec{\sigma}_1 \cdot \vec{\sigma}_2}{r^3} - 3\,\frac{\vec{\sigma}_1 \cdot \vec{r}\,\vec{\sigma}_2 \cdot \vec{r}}{r^5} \right) (1+a_{\rm e})^2 \\ &+ \frac{Z\alpha}{4m^2} \left[\frac{1}{r_1^3}\,\vec{r}_1 \times \vec{p}_1 \cdot \vec{\sigma}_1 + \frac{1}{r_2^3}\,\vec{r}_2 \times \vec{p}_2 \cdot \vec{\sigma}_2 \right] (1+2a_{\rm e}) \\ &+ \frac{\alpha}{4\,m^2\,r^3} \left[\left[(1+2\,a_{\rm e})\,\vec{\sigma}_2 + 2\,(1+a_{\rm e})\,\vec{\sigma}_1 \right] \cdot \vec{r} \times \vec{p}_2 \right. \\ &\left. - \left[(1+2\,a_{\rm e})\,\vec{\sigma}_1 + 2\,(1+a_{\rm e})\,\vec{\sigma}_2 \right] \cdot \vec{r} \times \vec{p}_1 \right] \\ &+ \frac{Z\alpha}{2mM} \left[\frac{\vec{r}_1}{r_1^3} \times (\vec{p}_1 + \vec{p}_2) \cdot \vec{\sigma}_1 + \frac{\vec{r}_2}{r_2^3} \times (\vec{p}_1 + \vec{p}_2) \cdot \vec{\sigma}_2 \right] (1+a_{\rm e}) \end{aligned}$$

Intro	Helium energy levels	QED theory ○○●○	Numerical evaluation	Results	Tests 00	Conclusions

$$E^{(6)} = \langle H^{(6)} \rangle + \langle H^{(4)} \frac{1}{(E_0 - H_0)'} H^{(4)} \rangle$$

$$E^{(7)} = \langle H^{(7)} \rangle + 2 \left\langle H^{(5)} \frac{1}{(E_0 - H_0)'} H^{(4)}_{fs} \right\rangle + E_L$$

$$H^{(5)} = -\frac{7}{6\pi} \frac{\alpha^2}{r^3} + \frac{38 Z \alpha^2}{45} \left[\delta^3(r_1) + \delta^3(r_2) \right]$$

- anomalous magnetic moment
- electron self-energy and vacuum-polarization
- finite nuclear mass effects

Intro	Helium energy levels	QED theory ○○○●	Numerical evaluation ○	Results	Tests 00	Conclusions
High	ner order e	ffective	Hamiltonia	n <i>H</i> ⁽⁷⁾		

$$H^{(7)} = Z \alpha^{7} \left(\frac{91}{180} + \frac{2}{3} \ln[(Z \alpha)^{-2}] \right) i \vec{p}_{1} \times \delta^{3}(r_{1}) \vec{p}_{1} \cdot \vec{\sigma}_{1} + \alpha^{7} \left(-\frac{83}{60} + \frac{\ln \alpha}{2} \right) (\vec{\sigma}_{1} \cdot \vec{\nabla}) (\vec{\sigma}_{2} \cdot \vec{\nabla}) \delta^{3}(r) - \alpha^{7} \frac{15}{8\pi} \frac{1}{r^{7}} (\vec{\sigma}_{1} \cdot \vec{r}) (\vec{\sigma}_{2} \cdot \vec{r}) + \alpha^{7} \left(\frac{69}{10} + 3 \ln \alpha \right) i \vec{p}_{1} \times \delta^{3}(r) \vec{p}_{1} \cdot \vec{\sigma}_{1} - \alpha^{7} \frac{3}{4\pi} i \vec{p}_{1} \times \frac{1}{r^{3}} \vec{p}_{1} \cdot \vec{\sigma}_{1} + H_{\text{amm}}$$

• dimensional regularization

Intro	Helium energy levels	QED theory	Numerical evaluation	Results	Tests	Conclusions O
Non	rolativistic	wavo f	unction			

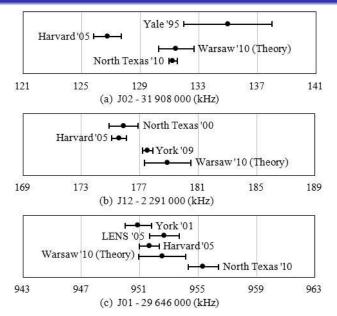
•
$$\vec{\phi}(\vec{r}_1, \vec{r}_2) = \sum_{i=1}^{N} c_i \left[\vec{r}_1 \exp(-\alpha_i r_1 - \beta_i r_2 - \gamma_i r) - (1 \leftrightarrow 2) \right]$$

- variational approach: minimize energy with respect to $c_i, \alpha_i, \beta_i, \gamma_i$
- master integral

$$\frac{1}{16 \pi^2} \int d^3 r_1 \int d^3 r_2 \frac{e^{-\alpha r_1 - \beta r_2 - \gamma r_{12}}}{r_1 r_2 r_{12}} = \frac{1}{(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)}$$

• parameters α_i , β_i , and γ_i are chosen quasirandomly

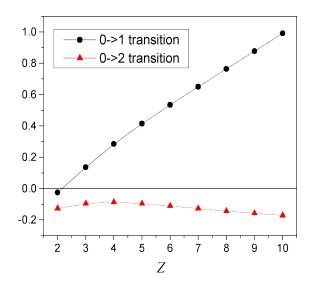
$$\begin{array}{rcl} \alpha_i & \in & [A_1, A_2] \\ \beta_i & \in & [B_1, B_2] \\ \gamma_i & \in & [C_1, C_2] \end{array}$$


• $E_0(2^3P) = -2.13316419077928320514696^{+0}_{-10}$

Intro 00	Helium energy levels	QED theory	Numerical evaluation	Results ●○○○	Tests 00	Conclusions O
Res	ults					

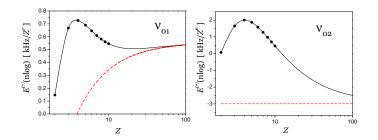
Term	$ u_{01}$	$ u_{12}$	Ref.
$m\alpha^4(+m/M)$	29 563 765.45 29 563 765.23	2 320 241.43 2 320 241.42	Drake (2002)
$m\alpha^5(+m/M)$	54 704.04 54 704.04	-22544.00 -22545.01	Drake (2002)
$m lpha^6$	-1 607.52(2) -1 607.61(4)	-6506.43 -6506.45(7)	Drake (2002)
$m \alpha^6 m / M$	-9.96 -10.37(5)	9.15 9.80(11)	Drake (2002)
$m lpha^7 \log(Z lpha)$	81.43 81.42	-5.87 -5.87	Drake (2002)
$m\alpha^7$, nlog	18.86	-14.38	
$m lpha^8$	±1.7	±1.7	
Total theory	29616952.29 ± 1.7	2291178.91 ± 1.7	

Comparison with experiments: from Shiner 2010

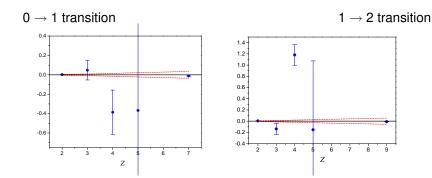

• α from ν_{01} Zelevinsky, Farkas, and Gabrielse (2005)

$$\alpha^{-1}(\text{He}) = 137.036\ 001\ 1(39)_{\text{theo}}(16)_{\text{exp}}$$

•
$$\alpha^{-1}(g-2) = 137.035\,999\,084(51)$$


- theoretical uncertainty is due to the higher order terms
- ν₀₂ fine structure measurement in heliumlike ions ?

Intro	Helium energy levels	QED theory	Numerical evaluation	Results ○○○●	Tests 00	Conclusions O
m	⁶ correction	n im MH	7 /7 ⁶			


Intro 00	Helium energy levels	QED theory	Numerical evaluation	Results	Tests ●○	Conclusions O
Test	S					

• checking the hydrogenic limit

• comparison with experiment for different nuclear charges

- Z = 3 Riis et al. 1994
- Z = 4 Scholl et al. 1993
- Z = 5 Dinneen et al. 1991
- Z = 7 Thompson *et al.* 1998
- Z = 9 Myers *et al.* 1999

Intro	Helium energy levels	QED theory	Numerical evaluation	Results	Tests 00	Conclusions •
Con	clusions					

- $\alpha^{-1}(\text{He}) = 137.035\ 999\ 5(39)_{\text{theo}}(6)_{\text{exp}}$ from Shiner 2010
- disagreement between experimental results for ν₁₂ and ν₀₂
- large uncertainty due to higher order terms
- testing 1/Z expansion against hydrogenic limit
- possible 10⁻⁹ determination of *α* requires more accurate estimation of higher order terms
- one of the most accurate tests of QED, (μH+H Lamb shift)